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ON WAVE PROPAGATION AND ENERGY SCATTERING IN
MATERIALS REINFORCED BY INEXTENSIBLE FIBERSt

YECHIEL WEITSMANt

School of Engineering, Tel-Aviv University, Tel-Aviv, Israel

Abstract-This paper concerns the propagation of elastic waves in materials reinforced by inextensible fibers.
Slowness surfaces, energy fluxes and directions of propagation are determined and expressed in terms of material
properties and fiber directions.

The case of two domains of fiber-reinforced materials, similar in all respects except for fiber direction, and
bonded together at a plane interface, is considered in detail. The misalignment in fiber directions that occurs at
the bonded interface is shown to cause a significant scattering of mechanical energy.

The range of validity of the mathematical model employed in this paper is indicated and it is shown that the
results may be useful in practical cases.

The existance of surface waves is also discussed.

INTRODUCTION

MANY investigations concerning the mechanical behavior of composite materials, mostly
regarding their static response, were conducted in recent years. A survey of the significant
contributions up to the mid sixties was given by Hashin [IJ. Another detailed exposition
concerning the static analysis of fiber-reinforced materials was published recently [2].

The major aim, ofmost ofthe theoretical investigations concerning composite materials,
was the establishment of constitutive equations which describe the mechanical response
of a multi-phase medium in a mathematically tractable manner. This aim was practically
achieved by means of the "effective modulus theory". The "effective modulus theory"
represents approximately the static response of a multi-phase medium by the behavior
of an equivalent homogeneous material. The approximation is accomplished by deriving
the "best" equivalent moduli for the representative homogeneous material, so that it
reproduces the mechanical response of the composite in some average sense.

In the case ofa fiber-reinforced matrix, the composite can be approximated by a homog­
eneous, transversely isotropic material [2]. In this case the approximation yields expressions
for the five "equivalent moduli" of the transversely isotropic medium.

The dynamic behavior of composite materials is much more intricate than their static
response. The major added complication is due to the many reflections and refractions of
waves, that occur within the composite material, at the inner boundaries between the
various material constituents. These dynamic interactions at the inner interfaces give rise
to wave dispersion, a phenomenon which is ignored by the "effective modulus theory".

Some aspects of wave propagation in orderly layered, or laminated, composites were
analyzed and solved exactly [3, 4]. In those cases expressions were given for "effective
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moduli" as relevant for each particular problem. It has been shown that for laminated
media the effective modulus theory yielded results which were in reasonably good agreement
with the exact solution for waves of large wave length.

No exact solution is available at present for a wave propagation problems in fiber­
reinforced materials. In the absence of any reliable basis for comparison it is conjectured
that the effective modulus theory can be employed to predict the dynamic behavior of
fiber-reinforced composites, provided that the one recognizes that the validity of the con­
clusions is restricted to the large wave length range.

This paper considers some aspects of wave propagation in elastic materials reinforced
with inextensible fibers. In a forthcoming work [5J, it will be proven that the theory of
materials reinforced by inextensible cords is essentially an "equivalent modulus" formula­
tion.

As has been already stated, the range of validity of the results presented herein is clearly
restricted to waves of long wave length and low frequency. The results fail to incorporate
the dispersion that is caused by the intra-phase boundaries.

On the other hand this paper illuminates the dispersive effects of misalignments in
fiber directions.

A fiber-reinforced material is endowed by the fibers with a preferred direction. Various
wave quantities are related to, and determined by, the directions of the fibers. If, for instance,
two semi-infinite fiber-reinforced material regions, which are similar in all respects but
differ in the fiber directions, are bonded together at a plane boundary, then a most significant
diffraction of waves may occur at the interface even at low frequencies and for long wave
lengths.

This aspect, ofdiffraction of waves due to fiber misalignment, has not been investigated
thus far.

The mathematical method employed in this work is based upon the classical formulation
of wave propagation in anisotropic materials [6, 7]. In spite of its limitations, this mathe­
matical model has the significant advantage ofsimplicity. Due to this simplicity ofthe model
it was possible to investigate analytically a phenomenon that is much too cumbersome to
analyze otherwise.

For the sake of completeness, this paper includes a discussion of surface waves in
elastic materials reinforced with rigid fibers. It is shown that under special circumstances
it is possible to recover the Rayleigh wave.

BASIC CONSIDERATIONS

Consider a material body reinforced by a very large number of inextensible fibers. Let
the distances between adjacent fibers be much smaller than the dimensions of the body,
assume all the fibers to be parallel to a common direction n (101 1). In general 0 may vary
in space, so that n = n(x). In this paper the standard index notation will be employed,
e.g. x = Xiei = Xtet +X2e 2 +X3e3'

Assume that the fibers extend without interruption from one end ofthe body to the other.
In view of their close spacing and inextensibility the fibers impose on the material the
geometric constraint

enn(x) = 0

where enn is the component of strain in the direction of o.

(1 )
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Denote by U the strain-energy density of an isotropic body. In the linear elastic case
we have

(2)

where A and /1 are the Lame constants.
In general, the components of the stress tensor (Jij are taken as the derivatives of U with

respect to the corresponding components of the strain sij' However in the present case,
the components of sij are not all independent, because of the geometrical constraint (1)
which requires that

Snn = spqnpnq = O.

Employing a Lagrange multiplier! we write

o 1
(Jij = ;;--hASrrSss + /1SrsSrs + !Spqnpnq)

uSij

whence we obtain

(3)

(4)

(5)

The quantity ! expresses an indeterminate tension in the direction of the fibers. This
quantity cannot be determined from the constitutive equations and is only decided in terms
of imposed traction boundary conditions.

Equation (5) is a linearized version of the nonlinear theory ofelastic materials reinforced
by inextensible cords [8].

As already noted it is possible to represent a fiber-reinforced composite body by a
homogeneous transversely isotropic body [2]. In general, the constitutive relation for
transverse isotropy about a direction n reads [9] :

(Jij = },Skkbij+ 2/1sij+ rx(snnbij+ nin/'kk) + 2P(siknjnk +Sjknjnk) +ysnnnjnj' (6)

In (6) the quantity enn is the strain in the direction of n.
Equation (5) represents a limiting case of (6), with rx P= 0 and when enn = 0 but

Y -+ 00 so that yenn = !.
In order to appreciate the physical meaning of the limit y -+ 00 and rx = P= 0 it is

necessary to perform some detailed and cumbersome calculations, converting the quantities
A, /1, rx, P, y which appear in equation (6) to the moduli employed in Ref. [2]. For the sake of
brevity these calculations will be given elsewhere [5].

At present, the conclusions will be stated without proof. Accordingly, the model of an
elastic material reinforced by inextensible cords provides a useful tool for studying wave
propagation phenomena in a fiber-reinforced matrix under the following circumstances:

1. The fibers are much more rigid than the matrix.
2. A small volume fraction of fiber material.
3. The distances between adjacent fibers are much smaller than the dimensions of the

body.
4. The Poisson's ratio of the matrix material is close to zero.t
5. The wave lengths considered are much larger than intra-fiber distances.

t For small volume fractions of fiber material the approximation remains valid for any value of Poisson's
ratio of the fibers.
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SLOWNESS SURFACES FOR EXTENSIBLE FIBERS

Consider first the constitutive equation (6) with IX = fJ = 0 but with finite y.
Let w be the frequency of a harmonic wave and s its slowness vector [6,7]. Let the dis­

placement components be given by

or

A
iw(s.x-t)

uj = Pje .

In (7) A is the amplitude, p is a unit vector in the direction ofu and t denotes time.
With IX = f3 = 0 in (6), the dynamic equations (Jij,j = PUi read

[(A + Il)SiSk + IlSjSAk + y(njs)2ninkJpk = Pi

(7)

(8)

(9)

In order to solve (9) consider the following
(a) S2 = pill = Cl 2

, where c2 is the velocity of propagation of shear waves. In this case
we must have s.p = Oandn.p = O.

This means that one slowness surface is a sphere of radius 1/c2 . Ifn, the fiber direction,
coincides with the polar axis of this sphere, then the displacement p is always parallel to the
latitudinal directions.

There are however, two exceptions:
(i) n. s = 0, s. p = 0

which means that on the equator of the above mentioned sphere there exist also displace­
ments p in the direction of n.

(ii) slln
which, in view of (9) yields

(A+Il+y)n.p = 0 i.e. n. p = O.

This means that at the poles there exist displacements in all directions tangent to the
sphere.

(b) S2 "# pill. In this case

p = as+bn.

From (9) we obtain

(1-c~s2)(as+bn) = (ci - d)[as2+ b(n. s)Js+1'.(n. s)2[a(n. s)+bJn.
p

In the above equation ci = (A +211)1p.
We get

(10)

Let () be the angle between nand s, then n . s = S cos () = Sn' From the determinant of
(10) we get

(11)
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therefore

S2 = P {_I(1_C2S2)[+(I)2(1_C2S2)2+41'.(C2_C2)(1_C2S2)(1_C2S2),1t}.
n 2y(ci _cD p 1 - P 1 P 1 2 1 2 J

For s 1- n, Sn 0 and (11) yields

or

or

For s II n, Sn = S so that we obtain

2( 2 Y) 4- (2 2 Y) 2 1 0C2 Cl+
p

S - C2+Cl+p S + =

whence

S2 = (ci+~)-l

For small values of Y the slowness surfaces are sketched in Fig. 1. In the isotropic case,
y = 0, the slowness surfaces are two spheres lsi = cl l

, lsi = CZ1
•

Now, an alternative form of(l1) is

[
Y( 2 2) 4() Y 2 2 () 221 4 (Y 2() 2 2) 2 1 0PCl-C2 cos -pCl cos -C1C2JS + pCOS +C l +C2 S - =

or

o

FIG. 1. A sketch of the slowness surfaces for small )I.
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For large y, (12) yields

therefore

YECHIEL WEITSMAN

S2 = (d cos28+ci sin2 8)-1

For small Sa more precise conclusion from (12) is

or S -> o. (13)

S2 = p
Ycos2 8'

If y is large but cos28 -> 0 so that y cos2 8 remains finite, then, by (12)

(~COs28ci+cid)s4-(~COS28+ci+c~)S2+1 = O.

In this case we conclude that

and

S2 = (~COS2 8+d)-1

The second of (15) is equivalent to

(14)

(15)

!s;+ds2 = 1.
P

Finally, an additional feature of the slowness surfaces for large y and small values of cos 8
is obtained by rewriting (11) as follows

(16)

whereby
4

Y 2 2 2 1 y( 2 2) Sn
-Sn+ C2S = +-CI- C2 22 .
P P CIS -1

It may be seen from (16) that as CiS -> 1+ the radius of the slowness surface increases,
while as CIS -> 1- the corresponding radius decreases.

Finally, by solving for the ratio of a : b in equation (10) we have from p = as+bn that
the displacement u is proportional to

u = (ci-d)sns+(1-cis2)n. (17)

Slowness surfaces for large values of yare sketched in Fig. 2.

SLOWNESS SURFACES FOR RIGID FffiERS

Consider now the limiting case of rigid fibers as represented in equation (5). Let

u = Apeiw(s.x-t)
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FIG. 2. A sketch of the slowness surfaces for large y.

and the arbitrary reaction r be

r = iwT eiw(s.x-t).

The equations of motion for the constitutive equation (5) read

(p-IlS2)p = (A + Il)(s . p)s+ T(n. s)n.

In addition, the constraint Enn = 0, i.e. ui.jninj = 0, yields

(p. n)(s . n) = O.

In view of (19) there exist two cases:
(a) s. n = O. Then
(i) S2 = pill = Cz2 and s . p = 0 or
(ii) S2 = pI(A+21l) = c12

and p II s.
(b) p. n = O. Then, by (18)

T(n. S)+(A+ Il)(s. p)(s. n) = 0

whereby

(p-IlS2)p = (A+Il)(S.p)[s-(s.n)n].

In this case there exist two possibilities:

(i) S2 = pill = cz 2

and

p.s = o.

(18)

(19)

(20)

(21)

(22)

(23)
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(ii) p parallel to s - (s . n)n which yields

(24)

Equation (22) can be rewritten to read

showing that this equation describes an ellipsoid of revolution about the axis of n.
In the subsequent analysis it was found advantageous to introduce the non-dimensional

slowness q = czs. In terms of q, equation (23) describes the sphere Iql = 1, while the ellip­
soid (24) is given by

I-v z 1 z
2--q ---(q.n) = 1.

1-2v 1-2v
(25)

In addition, we have slownesses lying on the equatorial circle as described by equation
(20).

The spherical and ellipsoidal slowness surfaces, and the equatorial "slowness circle",
are shown in Fig. 3.

An inspection of Figs. 2 and 3 indicates that the ellipsoid and the equatorial ring are
traces of two interior slowness surfaces that exist for finite values of y. The horizontal
portions of the interior slowness surfaces disappear when y --+ 00. It will be seen later that
their disappearance is compensated by the presence of arbitrary reactions in direction n.

-I-----+-----"k-----I'-------r-q,

FIG. 3. A sketch of the slowness surfaces for rigid fibers.
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STRESS AND DISPLACEMENT FIELDS IN THE CASE OF RIGID FmERS

1. Consider p . n = 0
In view of (21) we have

(Jij = A{[Abij-(A + p)njnj)SkPk + p(pjSj+ Pjsi)}iw eiCtJ(S,,.-t)

and, from (22),

(26)

(27){(A +P)[SiSk- Sjnjnisk) +(ps2
- P)bik}Pk O.

Setting the determinant of (27) to be zero, we obtain

(ps2
- pf{ps2

- P+(A +p)[S2 - (s. nf)} = O.

(i) Consider ps2
- p = 0, namely the slowness surface Iql 1. In this case equation

(27) yields p . q = O. Together with p. n we obtain

p = n x qJln x ql. (28)

Therefore the spherical slowness surface is associated with shear waves whose displace­
ments are in directions transverse to n as sketched in Fig. 4. This wave will be denoted the
"transverse shear" (T - S) wave.

With p . q 0 equation (26) yields

(Jjj = Ap(PiSj+ pjsi)iw eiro(s.x-t). (29)

For the sake of brevity terms like iw eiro(s.x-t) will be omitted in the remainder of this
paper.

A substantial simplification is achieved in the formulation if q2 is taken to be zero.
This can be done without loss of generality because the slowness surfaces are bodies of

FIG, 4. Displacements corresponding to the T-S waves.
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revolution about the axis of o. With this additional simplification we have for the T-S
wave:

U 1 = Knzq3

U z = K(n3q, - n1q3)

U3 = -KnzQl

(13' = Knz(Q~-QD

(132 = K(n3q, -n,Q3)Q3

(133 = - 2KnzQlQ3'

In (30) K = (Alln x ql) eiro(s.x-t), K = iw(plcz)K and Q~ = 1-Qi.
(ii) Consider now

(30.1)

(30.2)

(30.3)

(30.4)

(30.5)

(30.6)

(31)

Equation (31) is equivalent to (25) and represents the ellipsoidal surface. In this case
equation (27) yields, after several straightforward manipulations,

p = (0 xq) xolio xql. (32)

This displacement is normal to the polar axis 0 and directed towards it. Therefore, the
wave has the character of a "normal compression" wave. It will be denoted by N - C
(Fig. 5).

In view of (32) it follows that

SkPk = (1/10 Xsi)[S2 - (s. o)zJ

whereby, together with (31), we get

(), +P)SkPk = Olio xsl)(p - pS
Z

).

n

;'1
, , I

I , I II I J I I
I I

I J I I I I I
J I I I I II I I I I

I II I I I

r-!l '-J
I I I

I I
~-I

, I I
I I I I, I J ,

J I, ,
J I

I , , I
I I I I
I

,
I ,

II I I I
r I I I
I I I II I I II I I
I r I I
I r I I
I

r I II
I I :...------ ....... 1I

FIG. 5. Displacements corresponding to the N-C waves.

(33)
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Setting (33) into (26) and employing (32) we obtain for the N-C wave:

U1 = D[ql -(n. q)n 1]

Uz = D[ -(n . q)nz]

U3 = D[q3 -(n . q)n3]

(34.1)

(34.2)

(34.3)

(34.4)

(34.5)

(34.6)

In (34) D = A/In xql eiw(s.x-r) and fj = iw(p/cz)D. It was again assumed that qz = 0,
while q3 is related to ql by (42) as shown later.

2. Consider S . n = 0
In this case the equations of motion (18) read

(35)

The determinant of (35) yields

(i) Assume !J.sz - p = O. In this case (35) yields s . p = O.
Since p 1.. n was already considered in equation (28), the linearly independent displace­

ment which satisfies q . p = 0 at the equator of the sphere is

p = n. (36)

This displacement is associated with shear in the direction of fibers. The resulting
wave will be denoted as the N-S wave (Fig. 6).

I
I
I
I
I
I
I
I
I
I
I
\

\
\
\
\
\
'--

-----r------'-----r----'
I I I
I I I

: I,
I
I
I
I
I
I
I
I
I
I
I

FlG. 6. Displacements corresponding to the N-S waves.
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For the N-S wave we get:

YECHIEL WEITSMAN

U 1 = Ln 1

U z = Lnz

U3 = Ln3

(37.1)

(37.2)

(37.3)

(37.4)

(37.5)

(37.6)

In (37) L = A eiw(s.x-t), L = iW(Jl/cz)L.
(ii) Assume (A. +2Jl)sz - p = O.
This case turns out to be a part of the case p . n = 0 already covered by equation (31).

3. An exceptional case

It can be observed that expressions (28), (30), (32) and (34) become indeterminate when
q = n, namely when the slowness vector is parallel to the fiber direction. This case corres­
ponds to the points at the poles in Fig. 3.

Since it has been assumed, without loss of generality, that qz = 0, the condition q = n
yields n = n1e1+n3e3 .

It is easy to see that when nz = 0 we obtain:
(i) For the T-S wave:

so that

U 3 = 0

(J31 = 0

(J32 = Aiw(Jl/cz) eiw(s.x-t)q3

(J33 = O.

(ii) For the N - C wave. Here also p . n = 0, therefore

U 1 = - Bn3

Uz = 0

U3 = Bn 1

(J31 = B(n1ql -n3q3) = B(ni-n~)

(J32 = 0

(J33 = 2Bnlq3 = 2Bn1n3'

(38)

(39)
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In (39) B = A eiro(s.x-t) and Ii = iW(J1./C2)B.

4. Arbitrary reaction
Consider s . n = 0 and 1" = iwTo eiro(s.x-t) and assume that the displacement field u

vanishes identically.
In this case the stress field is given by

The equations of motion reduce now to

(T .. . = n.n.s·T.o(-w
2 ) eiro(s.x-t) = 0

'),) I ) ) •

Therefore, in the case of rigid fibers, it is possible to have a motionless, self-equilibrating
traction field.

The existence of this field compensates for the absence of a third slowness surface in
the case of rigid fibers. The condition s . n = 0 indicates that the arbitrary traction field is
the trace of the flattened-out portions of the slowness surfaces in Fig. 2.

The traction, across any surface X 3 = const., due to the arbitrary reaction field (A-R)
is given by:

(T31 = TOn3n1iweiro(s.x-t)

(T32 = TOn3n2iweiro(s.x-t)

(T33 = Ton~iw eiro(s.x-t).

(40)

Also U 1 = U2 = U 3 = O.
When the plane q.n = 0 intersects the sphere Iql = 1 along the equator the motionless

arbitrary traction field no longer exists and must be replaced by the N-S wave. This case
occurs when q3 = -(ndn3)q1 = ±)(I-qi)·

GROUP VELOCITIES AND ENERGY FLUXES

The following was shown to hold for the T-S wave:

TS

q3 = ±)(l-qi).

Equation (25) yields for the N-C wave:

NC f2(v)n 1n3q1±F(v,q1,n)
q3 = 1 f ( ) 2- 2 V n3

where

and

(41)

(42)

(43)

1-2v
f1(V) = 2(I-v)'
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denote the dimensionless group velocity by yg. We have [6, 7J:

yg = VD(q) .
q.VD(q)

(44)

(45)

In (44) D(q) = 0 is the expression for the slowness surface under consideration. The
energy flux <E) is given by [6J:

<E) = -<RerijReuj ).

Employing (7) and (5) we obtain

<E) = !(wz/cz)A{[(A+J.l)(q. P)Pi+M;]A+cz'(o. p)nJ.

For each type wave equations (44) and (45) reduce further as follows:

1. T-S wave

For this wave D(q) = qi + q~ - 1 = O. Therefore
TS

vg = q je j ±.j(l-qi)e3 ·

Also, since 0 . P = 0 and q . P = 0 we have

(46)

TS
<E> = 1wzAZ(J.l/cz)(qje j ±.j(l-qi)e3 ). (47)

In view of(46) it is clear that a positive sign has to be taken in (47) ifthe wave propagates
in the positive X 3 direction and vice versa.

2. N~C wave
For this case equation (25) yields

(1-2v)D(q) = 2(1-v)(qi +q~)-(qjnj+q3n3)z-(1-2v) = O.

Therefore,

NC 1 { NC NC NC }
yg = 1-2v [2(1-v)qj -(q. o)njJe j +[2(l-V)q3 -(q. 0)n 3Je3 .

In view of (44), we obtain

NC 1 { NC NC}
yg = -- [2(1- v)q j -(q . o)njJe j ± F(v, q, 0)e3...1-2v

The quantity F(v, q, 0) is given in (43).
Now, for N -C wave cz, = -A(A+J.l)q. P, whereby

NC

<E) = 1(wz/cz)A Z{(A+J.l) (q,P)[Pi-(o.p)niJ+M;}·

In general
Pi -(0. p)ni = [(0 x p) x OJi

but for the N - C wave p .0 = 0 so that (0 x p) x 0 = P thus

<If;> = 1wz A z(J.l/cz) {2 /-=-;v qi - 1~ 2v (0. q)n}-

(48)

(49)
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In view of(48) it is clear that a positive sign has to be taken in (42) for waves propagating
in the positive X3 axis and vice versa.

3. N-S wave
NS TS

In view of Fig. 2 it is clear that at the equator the group velocity Vg = Vg . Similarly, one
NC TS

can readily find that <E) = <E). Therefore, equations (46), (47) are valid for the N-S
wave also.

SURFACE WAVES

For the existence ofsurface waves, decaying away from the surface X3 = 0, it is required
NC TS

that ql be real while q3' q3 be both complex or imaginary. This means that the more severe
of the following conditions

qi> 1

z I-fz(v)n~ f() 1-2v 2(1-v)-n~

ql > I-fz(v)(l-n~) 1 v = 2(1-v)2(I-v)-(ni+n~)

must be satisfied.
In view of (50) we have:

For n~ < 2(1- v)(l- ni) it is necessary and sufficient to have qi > 1.

For n~ > 2(I-v)(l-ni) it is necessary and sufficient to have

z 1-2v 2(1-v)-n~
ql > --- z z'

2(1-v) 2(1-v)-(n 1 +n3)

Employing equations (30), (34) and (40) the vanishing of the traction at X3 = 0 requires

TS NC
nz(q~ -qi) (1 + n~)qlq3 - n1n3 n1

TS TS NC
(n3ql -n 1q3)q3 (qi -1)nzn3-qlq3nl nz nz = O. (51)

TS

-2nzqlq3 I-n~ -(1 +nnqi n3

In view of (41) and (42), (51) becomes an equation for q l' If q 1 satisfies the restrictions (50)
then surface waves exist.

Rather than investigate the complete solution of (51), it suffices for the purpose of the
present discussion to consider some special sub-cases.

Assume for instance that n1 = O. In this case the determinant (51) simplifies to

(52)

The solution of (52) was obtained numerically with the aid of an electronic computer.
It has been shown that for v = 0 and v = t there exists a real root ql > 1 for all values

of Inzl ::s; 1. This means that surface waves are feasible. Values of ql vs. nz which solve (52)
are plotted in Fig. 7.
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1.3r---,----,-----.-----,,----a

1.2

1.1

1.0 0 .0 0.2 0.4 0.6

- "2

0.8 1.0

FIG. 7. Values of qt vs. n2 , which solve equation (52).

It may be noted that when n2 = 1, namely when the fibers are perpendicular to the
plane of wave propagation, the Rayleigh surface wave is reproduced.

REFLECTION AND REFRACTION OF PLANE HARMONIC WAVES

Consider two semi-infinite media, with common Lame constants Aand fl., bonded to
each other at the plane X3 = O. Let the directions of the fibers be n for X3 < 0 and N for
X 3 > O.

Let an incident N-C or T-S wave, which propagates from the medium n toward the
medium N, impinge on the interface X3 = O. Due to the abrupt change in the direction of
the fibers, every incident wave will decompose into reflected and refracted waves of all
types.

For any given nand N consider an incident wave of the form

(I) (1)(1) (I)

U = A P exp iw( s . x - t). (53)
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The corresponding reflected waves are
NC NCNC NC

U = A p exp iw( s. x - t)

TS TSTS TS
U = A P expiw(s.x-t) (54)

NS NSNS NS

U = A P exp iw( s . x - t).

In general, however, the last of (54) will be replaced by the following field of arbitrary
tractions:

(55)

NC TS NS

In view of (28), (32) and (36) the quantities p, p and p can be expressed in terms of n
and the respective slowness q.

Similarly, the refracted waves are given by:

NC NCNC NC

u' = A' p' exp iw(s'. x-t)

TS TS TS TS
u' = A'p' expiw(s' .x-t)

NS NS NS NS

u' = A' p' exp iw(s' . x - t).

(56)

NS NS NS

The refracted N-S wave is excited only when q3 = -(NtlN3)ql = ±)(1-qi), other­
wise, the last of (56) is replaced by the field of arbitrary tractions as follows:

AR AR AR

(1~j = A'NkNjexpiw(s' .x-t). (57)

In (56) the quantities p' can be expressed in terms of N and the relevant q' by means of
(28), (32) and (36).

The condition of perfect bonding at X3 = 0 requires continuity of tractions and dis­
placements at all points un the interface and for all time. Therefore q~x~ +q2X2

I I I

= qlXI +q2X2 = qlX I +q2x 2 for all Xl and X2. Thus: q'l = ql = ql for all wave forms.
I

In addition, since we take (without loss of generality) q2 = 0 it follows that q2 = q2 = 0
for all wave forms.

Furthermore, in view of (41) and (42) we have

NC, f2 N IN 3ql+F(v,qt>N)
q3 = 1-f2N~

so that the various vectors p can in fact be related to nand ql' or to Nand ql' only.
Altogether there exist six unknown amplitudes in the diffraction problem. These

TS NC AR TS NC AR

unknowns are the amplitudes A, A, A, A', A' and A'. Under exceptional circumstances
AR NS AR NS

A is replaced by A or A' is replaced by A'.
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These six unknowns are determined from the six boundary conditions at X 3 = 0 which
require that

and

The six by six system of equations is tabulated below:

TS NC AR TS NC AR (I)

A A -A A' A' A' A
- filxlif -Ioxql fNXiiT fNXiiT

TS JVC TS NC (II

nzq3 q, -(0. q)n, 0 Nzq~ q, -(N. q')N, 0 a,
TS NC TS NC (II

n3q, -n,q3 -(o.q)nz 0 N3q,-N,q~ -(N. q')N z 0 az
NC NC NC NC (I)

-nzq, q3 -(0. q)n 3 0 -Nzq, q~ -(N. q')N 3 0 a3 (58)

TS NC TS NC (I)

nz(q~ - qi) (1 +n~)q,q3 -n,n3 n, Nz(q~Z-qi) (l +N~)q,q~-N,N3 N, a4

TS TS NC TS TS NC (II

(n 3q,-n,q3)q3 (qi -1)nzn3-q,q3n ,nz nz (N3ql-N,q~)q~ (qi -l)NzN 3-q,q~N ,Nz N z as
TS TS (I)

-2nzq,q3 I-n~-(l+nDqi n3 -2Nzq,q~ I-N~-(1+N~)qf N 3 a6

The first three equations are obtained from continuity of displacements and the last three
equations are derived from continuity of tractions.

(1)

In (58) the column A represents quantities related to the incident wave. For an incident
(1) (1)

T- S wave the entries a,-a6 are obtained from (30). For an incident N - C wave those entries
are obtained from (34). In the present work the amplitude of each incident wave was

(1)

"normalized" so that it always corresponds to <E3>= 1.
This normalization provides a direct indication of the relative portions of energy

that are carried by the reflected and the refracted waves.
AR

In the particular case q, = n3 /(nf +nnt the column -A must be replaced by a column
NS

based upon (37), with q3 = -.Jl-qi. Analogously, when ql = -N3/(Ni+N~)t a
AR

refracted N-S wave is excited and the column A' must be replaced by a column like (37),
NS

with n -+ N. In this case q~ = .J(l- qi).
NC TS NS NC TS NS

The refracted fluxes of energy E~,E~,E~ and the reflected energy fluxes E3'£3,E3
are evaluated according to equations (47) and (49).
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A check on the results is provided by the requirement of balance of energy flux:

(1) NC TS NS NC TS NS

E3 +E3 +E3 +E3 = E~+E~+E~. (59)

This check was performed for all results presented herein.
Finally it should be recalled that for complex values of q3 (evanescent waves) the energy

flux is directed parallel to the interface X3 = 0, so that E3 = 0 [to]. In the present work
criteria for evanescence are given in (50).

Furthermore, since all incident waves are assumed to be propagating, it follows from
(41H43) that for incident T-S waves Iqll < 1 while for incident N-C waves

I I < [f,(1- f2n~) J2
q, I-f2(1-nD

A representative solution for diffraction of plane harmonic waves is exhibited in Figs. 8
and 9. All computations were performed on an electronic computer. Specific values of n
and N were taken as follows:

n1 = 0·2, n2 = 0·5, n3 = .J0·71; N I = 0-4, N 2 = 0·7, N 3 = .J0.35.

The value of Poisson's ratio was taken to be v = O. In each computation the amplitude of
the incident wave was normalized to give E3 = 1. The results for an incident T-S wave
are plotted v. q, in Fig. 8, with - 1 < q, < 1. Note that, in general, only two reflected
and two refracted energies are involved, since the energy-less arbitrary reactions are
activated in most cases.
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Exceptions occur when ql = ±n3/(ni+n~)t = ±0·972968 and at ql = ±N3/(Ni+
Nnt = ±0·828417. In those cases, reflected or refracted N-S waves are excited and their
participation in the differcation phenomenon gives rise to points of discontinuity in
Fig.8·t

In these cases the entries at third, or the sixth, column in (58) should be appropriately
selected according to (37). The details are presented more elaborately in equations (60)
through (68). The numerical results at these values of ql are:

TABLE I

TS NC NS TS NC NS

q, E3 E 3 E E' E' E'3 3 3 3

-0·972968 -0·009298 0 -0·069856 0·920846 0 0
-0·828417 0 0 0 0·951349 0 0·048651
+0·828417 0 0 0 0·862164 0 0·137836
+0·972968 -0·009298 0 -0·108173 0·882528 0 0

Note that the reflected and refracted N-C waves become evanescent for Iqll > 0·718331
and Iqll > 0·744104, respectively.

t The presence of "atoms" is directly attributable to the assumption of fiber inextensibility. Due to the inexten­
sibility, N-S waves are excited only in singular directions (the directions normal to the fibers). It will be shown
in a forthcoming paper that when the fibers are even slightly extensible the "atoms" no longer exist and all curves
are continuous.



(61)

(60)
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The results for an incident N-C wave are exhibited in Fig. 9. In this case ql covers the
range -0·718331 < ql < 0·718331; where a propagating N-C wave exists. In the present
range no N-S waves are excited.

It is worth noting that the curve in Fig. 8, which gives the energy flux of the reflected
N-C wave due to an incident T-S wave, is a mirror image in ql of the curve drawn in
Fig. 9, which represents the energy flux of the reflected T-S wave due to an incident N-C
wave.

REFRACTION OF INCIDENT N-S WAVES

It is impossible to analyze the case of incident N-S waves by means of expressions
derived for rigid fibers. The reason for the difficulty is that no distinction can be made
between the slowness vectors of the incident and reflected N-S waves, because for the
rigid fibers those two vectors must lie on the equator of the slowness sphere IqI = 1.

In order to overcome the difficulty we employ equations (16) and (17) for large y and
small values of cos e. For small cos e these equations yield

c2 (q 1n1 +q3n3)2+qi+q~ = 1, P n.

In (60) the notation q = c2s and ylft = c2 was employed.
Solving the first of (60) for q3 we get

± - c2n1n3Ql ±.J{1+c2n~ - [c2(ni +n~)+ l]qi}
q3 = 1+c2n~

However, since the slowness vector of the incident wave lies on the equator we have
ql = -n31.J(ni +n~), as may be deduced from Fig. 2. Therefore, we obtain from (61)

Furthermore, we get

and, as c2 -> 00,

c2n~ -1 nl
c2n~ + 1 .J(ni + n~) .

(62)

(63)

(64)n.q-=-2 nln3 _1_
.J(ni +nD c2n~ .

After straightforward calculations, we obtain the following values for the component
of the group velocity in the X3 direction:

V~(Q3") =

Hence, the slowness vector q + = q1e1 +qie3 is associated with a wave impinging on the
interface, while the slowness vector q- = q1e1 +q3"e3 is related to a reflected wave.
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(65)

Furthermore, in view of (6) and the (60)2' we obtain the following expressions for
displacements and stresses:

-[ 2v 2 ]U j = Bpj, aij = B 1_ 2v nkqkc)ij +njqj +njqj + c nkqknjnj .

In (65) B = eiw(s.x-t) and B = (iwJ.l/c2)B. The expression for the energy flux becomes

(Ei ) = iW2A2(J.l/c2{(1~2V +c
2
)(o.q)ni+ q} (66)

Setting (62) and (64) into (65) and (66), then taking the limit as c2
--+ 00 we get the following.

1. For the incident N-S wave

and

2. For the reflected N -S wave

(68)

and

NS

E3 = -A2nl(ni+n~)-+.

The solution for the case of an incident N-S wave is obtained from equations (58).
(I) (1)

The entries for the incident column, a1-a6 , are given in (67) and the column -AR must
be replaced by the entries listed in (68).

Employing the same values as before for the fiber directions 0 and N and for Poisson's
ratio v, we obtained the following numerical values for the refracted energies: at q1 =
- n3 / )(ni + n~):

NS TS NC NS TS NC

E~) = 1·0, E 3 = -0·10817, E 3 = 0, E 3 = -0·81267, E~ = 0·07916, E~ = o.
Entirely analogous results can be obtained at q1 = +n3/(ni + n~)t, where incident

and reflected N-S waves also occur simultaneously. In this case it can be shown that
expressions (67) and (68) are still valid, except that the signs in front of the stresses must be
reversed and the roles of incident waves and reflected waves must be interchanged.

SPECIAL CASES OF REFRACTION

1. Consider n2 = N 2 = 0

In this case the slowness vector q = q1e 1+q3e3 lies in the plane ofo and N. The follow­
ing conclusions can be reached from inspection of equations (30), (34), (40) and (58).
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TS (1)

In the case of an incident T-S wave the column A' becomes identical with the columnA
in (58) regardless of the values of n1 , n3 , N 1 and N 3' Therefore the incident T-S wave
proceeds undisturbed across the interface.

In the case of an incident N-C wave it can be observed, after some straightforward
manipulations, that this wave will be entirely reflected as an N-C wave. This means that
the interface will act as a perfect barrier against N-C waves.

This last conclusion, concerning N-C waves, is not valid under the exceptional con­
ditions which enable the excitement of N-S waves.

2. The case n2 = 0, N 2 = I; « 1
In this case it can be shown that the interface X 3 = °acts as a perfect barrier against

incident T-S waves while it transmits N-C waves entirely. These conclusions are not valid
under the exceptional circumstances when N-S waves are excited.

One should be cautioned that the conclusions for n2 = °and N 2 = I; are based on
considerations of order of magnitude, with I; « 1. It is suspected that these conclusions
may be restricted to rigid fibers only and are not valid for any finite values of y, no matter
how large.

CONCLUSIONS

In this paper it has been shown that in materials reinforced by straight, parallel and
rigid fibers, there exist three types of harmonic, elastic waves. Two types of waves can
propagate in any direction. One of these two waves is a compression-like wave with
displacements perpendicular to the fibers. This wave is named the "normal compression"
wave and denoted N-C. The second of the two waves is a shear wave with displacements
in directions transverse to the fibers. This wave is named the "transverse shear" wave and
denoted by T-S.

The third wave can propagate only in directions that are normal to the fibers. This
wave corresponds to shearing deformation with displacements that are parallel to the
direction of the fibers. In this case the motion is such that the fibers remain straight at all
times. This wave is called the "normal shear" wave and denoted by N-S. The motions
associated with the three waves were sketched in Figs. 4-6. In this paper, particular
attention was paid to the dependence of the various wave characteristics on the direction
of the fibers. It has been shown that if the same kinks are given to all fibers across a certain
plane within the composite material, then this plane acts as a diffracting interface.

When an incident N-C, T-S or N-S wave impinges on such an interface it decomposes,
in general, into all possible types of reflected and refracted waves. Attenuation occurs
for incidence beyond some critical angles.

The reflected and refracted fluxes of energy for all three types of incident waves were
analyzed in general and evaluated quantitatively for a specific example. In the example
certain values were selected for the directions of the fibers on each side of the interface,
so that the reflected and refracted energy fluxes remained dependent only on the direction
of propagation. The dependence of the various energies on the direction of propagation
was obtained with the aid of an electronic computer and was exhibited in Figs. 8 and 9.

These figures demonstrate the crucial effects that misalignments in fiber directions
may have on the transmission of mechanical energy in fiber-reinforced composites. There
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exist combinations of fiber directions and propagation directions which may hinder
substantially the forward progress of energy. Such combinations may be employed
advisedly to construct a desired filtering system or a wave guiding mechanism.

The practical significance of this work is limited by the range of applicability of the
mathematical model employed herein. It has been indicated that the results are meaningful
for a composite reinforced by very rigid fibers when the volume ratio of the fibers is small,
when the length of the waves is large in comparison with the intra-fiber distances and
when the Poisson ratio of the matrix material is close to zero. In order to gain better insight
into the effects of fiber misalignments on the dynamic response of composites it may be
worthwhile to remove the assumption of rigidity of the fibers. Such studies are being
conducted currently and will be reported in the near futurej
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A6cTpaKT-·Pa60Ta KacaeTCli pacrrpocTpaHeHHlI yrrpymx B01ll1 BMaTepHarrax, YCHJIeHHblX HepacTlilKHMblMH
BOJIOKHaMH. OrrpeneJIlllOTCli rrOBepXHOCTH MenJIeHHOCTH, rrOTOKH 3IleprHH H HarrpaBJleHHll pacrrpocTpa­
HeHHll If 3TH 3aBHCHMOCTfl rrpe.ll,CTaBJIlilOTCli BBblpa:iKeIlHllX CBOHCTB MaTCpHaJIOB If HanpaBJICHHllX BOJIOKOH.

PaCCMaTpHBaCTCll, rrO.ll,p06HO, cnyqaH .ll,BYX 06naCTCH MaTCpHaJIOB, YCHJICHHblX BonOKHaMH, rrOXO:iKHMH
BO BCCX oTHoweHHllX, KpOMe HanpaBneHHll BOJIOKHa H COe.ll,HHeHHbIX c c060n B,L\OJIB nnOCKOCTH pa3,n:eJIa.
YKa3blBaCTCll, 'ITO HerrpaBHJlbHble paCrrOJIOlKeHHlI no HanpaBnCHHIO 1l0JIOKOH, llCTpCqalOll.\HCCli Il.ll,OJIb
nJIOCKOCTH coeilHHeHHll. Bbr3blBalOT 3HaqHTeJIbHOC paccellHHll MeXaHHqeCKOH :meprHH.

npHBOJl.HTClI ilHana10H Ba:iKHOCTH MaTeMaTHqeCKOH MOneJIM. HCrrOJlb1yeMoH B pa60Te H yKa3blBaeTClI,
'ITO pe1YJIbTaTbi MoryT 6bITb HCnOJIb30BaHbi B npaKTHqeCKHX CJIyqalIX.

06CYlKnaeTCll, TaKlKC. Bonpoc cywecTBoBaHHlI nOBepXHOCTHblX BOJIH.

t Correction upon receiving proofs: upon further investigation it can be shown that the mathematical model
employed herein is valid for any value of Poisson's ratio of the matrix material. Therefore restriction (4) on
p. 629 can be removed without loss of generality. The details will be given in Ref. [5].


